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Results of linear and nonlinear static analyses of gravity-induced stresses in several typical dam cross-sections, 
in conjunction with published experimental correlations of shear modulus versus confining pressure for a 
large variety of soils, reveal that the average shear modulus across the width of earth/rockfill dams may be 
expressed as a power m of depth, with m ranging from 0.35 to 0.90 and depending on material and geometric 
parameters. A general inhomogeneous shear beam model is developed to account for any possible such 
variation of modulus with depth. Perhaps somewhat surprisingly, closed-form analytical expressions are 
derived for natural frequencies, modal displacements, participation factors, and steady-state response 
functions for all values of the inhomogeneity factor m. Parametric results are presented in tabular and 
graphical form and conclusions are drawn of practical significance. Finally, a comprehensive comparative 
study is undertaken to investigate the validity of the inhomogeneous shear beam (SB) models. For five 
different dam cross-sections, each excited by four recorded accelerograms, it is shown that plane-strain finite- 
element analyses yield fundamental periods and peak displacements within the dam which are in very good 
accord with the predictions of a 'consistent' inhomogeneous SB model. A companion paper 1 extends the 
present work and focuses on seismic shear strains and seismic coefficients within dams and embankments. 

IN TRODUC TION 

The shear beam (SB) model has been used extensively over 
the years to estimate the lateral seismic response of earth/ 
rockfill dams and embankments, 2-7 its popularity 
stemming mainly from its simplicity. A number of 
rigorous studies a ~o have largely corroborated one of the 
crucial assumptions of the SB model, namely that 
horizontal shear strains, shear stresses and displacements 
are essentially uniformly distributed across the width of 
the dam, and have moreover shown that the SB model 
yields natural periods and modal shapes which are quite 
realistic. These conclusions are also confirmed by the 
results of this and the companion paper. 1 To account for 
the dependence of soil stiffness on confining pressure, an 
improved version of the SB model has been developed 
which considers the (average across the width) shear 
modulus as increasing with the 2/3 power of the 
depth. ~°'~1 Direct and indirect evidence, including in-situ 
measurements of S-wave velocities and observations of 
the actual response of several dams 2° 12 have shown the 
general validity of such a modulus variation with depth. 
Other researchers 13 15 have also suggested a shear 
modulus increasing with depth, although not quite as 
steeply as with the 2/3 power. 

This paper first outlines the results of a comprehensive 
investigation on the factors influencing the variation of 
stiffness in earth and rockfill dams. It is concluded that the 
(average across the dam) shear modulus may be 
realistically considered as increasing with the m power of 
the depth z, where m may usually take values in the range 
0.40<~m~<0.75. Then an exact analytical solution is 
derived for free and forced vibrations of a truncated shear 
wedge (as sketched in Fig. 1) characterized by an arbitrary 
value of the power m. The third objective of the paper is to 
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present the results of a comprehensive comparative study 
in which the seismic response of several dam sections are 
computed by plane finite-element (FE) and by inhomo- 
geneous SB analysis. For  each dam section the l~ower m of 
the SB model is selected such that its modulus variation is 
consistent with the spatial variation of stiffness in the 
specific plane-strain model. It is concluded that such a 
'compatible' inhomogeneous SB predicts fundamental 
periods and peak seismic displacements which are in a 
very close agreement with those computed with the 
corresponding FE models. T~he present study is further 
extended in a companion paper 1 which focuses on 
distribution of peak seismic shear strains and seismic 
coefficients in dams and embankments. 

M O D U L U S  VARIATION WITH D E P T H  

While several (material, geometry and excitation related) 
factors influence the spatial distribution of effective shear 
moduli within a dam, it has been found in the course of 
our investigation that the average modulus, G(z), over a 
horizontal plane at a depth z from the origin (Fig. 1), 
depends mainly on three factors: 

(a) the dependence on confining pressure of the shear 
modulus G e of each constituent material 

(b) the size and the relative overall stiffness of the 
impermeable cohesive core 

(c) the inclination of the slopes and the truncation ratio. 

The effect of these factors on G(z) is quantitatively 
illustrated in this section. 

The shear modulus of a particular soil element at small 
levels of shear strain can be expressed as: 

Ge = F(e,OCR). a~'~ (1) 

where: a~t = the  effective normal octahedral stress; and e 
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Fio. 1. Dam cross-section and distribution of  shear modulus with depth 

and OCR---the void ratio and apparent over- 
consolidation ratio of the particular element, respectively. 
The function F varies from soil to soil, monotonically 
increasing with decreasing e and increasing OCR. The 
dimensionless coefficient # has been known to be about 
0.50 for many laboratory tested soils, primarily clean 
sands and pure clays? 6'17 In the last decade, however, 
evidence which has accumulated from laboratory testing 
of a wide variety of real-life soils suggests that # may take 
values anywhere between 0.35 and 0.90. A thorough 
literature survey produced an abundance of data, some of 
which is summarized in Table 1. This information can be 
utilized to make reasonably good estimates of # for most 
materials to be used in the construction of dams and 
embankments. 

An interesting recent development comes from the 
work of Stokoe and his co-workers z4'25 who studied the 
propagation of S and P waves through a large cubic 
sample of sand (each side = 2.1 m) subjected to (truly) 
triaxial states of (initial) stress. They found that the S wave 
velocity depends only on two of the principal stresses, in 
the direction of propagation and in the direction of 
particle motion. The principal stress in the out-of-plane 
direction, in which no shear-wave particle motion occurs, 
has practically no influence on the magnitude of the shear 
velocity. Hence, it appears that the element shear modulus 
could be expressed as: 

G e = F.  (e,OfR)" ~ (2a) 

where, for lateral vibration of dams as in Fig. 1, 

0"p = (try + 0"~)/2 (2b) 

Note that under plane-strain conditions, as in the 
problem under study, 0"p would be equal to 0"o¢t if Poisson's 
ratio, v, were equal to 0.50, but would slightly exceed tro~, 

for the smaller values of v that are realistic for most earth 
and rockfill dams. 

Having established the likely range of p values, 
parametric static finite-element (FE) analysis were 
conducted to determine the distribution of gravity- 
induced 'initial' stresses in cross-sections typical of dams 
and embankments. Numerous linear but also a few 
nonlinear analyses, assuming both 'single-lift' and 'multi- 
lift' construction, were performed. Most of the studied 
sections were idealized and made up of only one or two 
different zones, but some actual earth dam sections with 
known material properties (from the published literature) 
were also investigated. 

A typical set of results is shown in Fig. 2 for a uniform 
120 m high dam made up of material having properties 
similar to those of the silty gravelly sand zone of the 
Chatfield Dam. 26 Plotted in Fig. 2a are the distributions 
along the central vertical axis of the two in-plane principal 
stresses, 0.1 and 0.3, as derived from the nonlinear 
computer code FEADAM 27 assuming a 15-lift con- 
struction. Notice that while tr 1 increases essentially 
linearly with z, the rate of increase of 0 3 is much faster: 
0"3ocz LS°, approximately. Assuming that the shear 
modulus Ge of each element is given by equation (2) with 
/z=0.50 and that F,(e,OCR) remains constant 
throughout the dam, leads to element moduli, Ge, which 
are almost uniformly distributed in the horizontal 
direction but increase appreciably with depth. In fact, the 
average modulus G over a horizontal plane (across the 
dam), which is used in the SB model, increases with z as 
shown in Fig. 2b. The following general dimensionless 
expression can be fitted to this curve with reasonable 
accuracy: 

G=Gb( m (3) 

Table 1. Summary of representative laboratory results on the dependence of shear modulus on confining pressure [equation (1)] 

Reported/z Value 
Type of Material Type of Test for equation (1) Reference 

Angular and round grained sands 
Normally consolidated clays 
Compacted coarse gravel (Dso = 45 mm) 
Silty sand (Dso ~-0.07 mm, 55% fines) 
Silty sand (D5o0.02 mm, 80% fines) 

Resonant column 
Resonant column; improved triaxial 
Special resonant column apparatus 
Resonant column; cyclic triaxial 
Resonant column 

0.404).50 16-18 
0.50-0.60 17, 19 

0.38 20 
0.60-0.90 21, 22 

0.77 23 
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Fig. 2. Nonlinear static analysis of a 120 m high dam: (a) Distribution of principal stresses along the central axis; (b) 
Distribution with depth of the average shear modulus across the width 

in which: (=z/H,  G=G(()  and Gb=the average shear 
modulus at the base of the dam ( (=  1). In this particular 
case, the best fit was achieved with m -  0.60 = # + 0.10. (In 
fact a value of m-~0.70 seemed to fit the near-the-crest 
portion of the curve and m---0.57 its lower half, with 
m---0.60 being the weighted average.) 

It was concluded from such studies that, in general, 

m = p + d  (4) 

in which: /~ is the power of equation (2) for the pre- 
dominant constituent dam material, while d is depended 
primarily on the size and stiffness of the core as well as on 
the geometry of the embankment. Figure 3 summarizes 
the results of our parameter study in the form of simple 
graphs which can be used as a guide in selecting d, and 
hence m, in a variety of practical situations. It may be 
concluded that in most cases d is in the range of 0.05 to 
0.20. Therefore, in view of the range of# values depicted in 
Table 1, the exponent m of equation (3) is likely to attain 
values anywhere between 0.40 and 0.80. Hence the interest 
in developing a class of inhomogeneous SB models in 
which G varies according to equation (3) with any possible 
value of m. 

INHOMOGENEOUS SB MODELS: LATERAL 
FREE VIBRATIONS 

Referring to Fig. 1, the governing equation of motion is 

derived by considering the dynamic equilibrium of an 
infinitesimal body of volume b.dz.1 along with the elastic 
relationship between (average) shear stress and shear 
strain. For free undamped vibrations: 

P ~ i r = z  ~z G(z)z (5) 

where u(z,t) is the lateral horizontal displacement, and p 
the mass density of the soil. 

By introducing the shear wave velocity at the base 
C b = x / [ ~ ]  and utilizing equation (3), the above equat 
ion takes the form: 

Setting 

~2 u C 2 l ~ (zm+z gU ) 
-~r=Hm z Cz -~z (6) 

utz,t) = U (z)e" (7) 
and substituting into equation (6), leads to 

z 2 U" + (m + 1)zU'+ k2z 2 - ' U  = 0 (8) 

where 

(.oHm/2 
k = - -  (9) 

Cb 
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Equation (8) is a Bessel equation and its solution is 

U(z) = z- m/2{AJq[k(1 + q)z' -,./2] 

+BYq[k(1 +q)z 1-,./2]} (10) 

where Jq and Yq are the Bessel functions of first and second 
kind, respectively, and of order 

and 2 is the truncation ratio: 

m 
q = 2 - m  (11) 

while A and B are integration constants. 
Applying the boundary requirements for zero relative 

displacement at the base and zero shear stress at the crest 
yields, respectively, 

H-"/2{AJq[k(1 +q)H' -,./2] + B Yq[k(1 +q)H 1 -,.[2]} =0  

(12a) 

and 

Gbk 
H" {AJq+ ~[k(1 +q)h I -"/2 

+BYq+ l[k(1 +q)h'-"/2]} = 0  (12b) 

from which, by eliminating A and B, one obtains the 
'characteristic' relation 

Jq+ l (a2 ' -" /2)yq(a)-  Yq+ l(a)~ 1-"/2)Jq(a)=O (13) 

in which 

coH 
a = (1 +q)  (14) 

C~ 

h 
;~ = - -  (15) 

H 

Equation (13) has a discretely infinite number of roots, 
a. = a.(m), n = 1, 2 . . . . .  which m u s t  be derived 
numerically. Substituting each of the a. values in equation 
(10) leads to the following expression for the displacement 
shape at the nth vibration mode: 

Un(~)=~-m/zNq(an~l-m/2), n = l ,  2 . . . .  (16) 

where Np( ) denotes the cylinder function: 

Np~ )=Yq(a,,)'dp( )-Jq(a.)'Yp( ) (17) 

and ( =  z/H. 

NATURAL FREQUENCIES A N D  
D I S P L A C E M E N T  S H A P E S  

The nth natural frequency and period of the dam 
expressed in terms of the shear wave velocity at the base 
are given by 

a . ( 2 - m )  Cb and T.= 4rt H (18) 
co . -  2 H a . ( 2 - m )  Cb 

The values of a. depend on the inhomogeneity m, for each 
value of truncation ratio 2 = h/H. Tables 2-6 present the 
values of a, for n=  1-8, corresponding to five charac- 
teristic values of the inhomogeneity parameter (m = 0, 1/2, 
4/7, 2/3 and 1) and a wide range of truncation ratios. Small 

Table 2. Roots a. for coefficient of inhomooeneity m equal to 0 

mode n 

2 1 2 3 4 5 6 7 8 

0.00 2.405 5.520 8.654 11.792 14.931 18.071 21.212 24.352 
0.03 2.409 5.541 8.703 11.880 15.068 18.262 21.464 24.670 
0.05 2.416 5.576 8.783 12.016 15.265 18.527 21.797 25.074 
0.10 2.448 5.726 9.096 12.510 15.949 19.403 22.866 26.335 
0.15 2.501 5.948 9.525 13.153 16.807 20.473 24.148 27.829 
0.20 2.574 6.233 10.048 13.917 17.809 21.711 25.622 29.536 
0.25 2.668 6.580 10.666 14. 804 18.963 23.131 27.305 31.484 
0.30 2.786 6.994 11.388 15.831 20.293 24.763 29.239 33.718 
0.35 2.930 7.485 12.231 17.024 21.833 26.651 31.474 36.300 
0.40 3.107 8.067 13.222 18.421 23.637 28.859 34.086 39.315 
0.45 3.323 8.763 14.400 20.078 25.771 31.471 37.175 42.880 
0.50 3.588 9.605 15.818 22.070 28.336 34.608 40.883 47.161 

Table 3. Roots a. for coefficient of  inhomooeneity m equal to 1/2 

mode n 

2 1 2 3 4 5 6 7 8 

0.00 2.903 6.033 9.171 12.310 15.451 18.591 21.733 24.874 
0.03 2.910 6.078 9.295 12.549 15.834 19.141 22.942 26.271 
0.05 2.921 6.148 9.465 12.844 16.262 19.707 23.478 26.794 
0.i0 2.974 6.415 10.035 13.740 17.488 21.260 25.245 29.380 
0.15 3.055 6.775 10.727 14. 769 18.849 22.950 27.018 31.210 
0.20 3.164 7.209 11.521 15.919 20.351 24.801 29.710 33.534 
0.25 3.301 7.718 12.422 17.208 22.025 26.857 32.394 36.467 
0.30 3.468 8.309 13.449 18.666 23.911 29.170 34.852 49.706 
0.35 3.671 8.997 14.630 20.334 26.064 31.807 37.556 43.310 
0.40 3.915 9.802 16.001 22.266 28.555 34.855 41.162 47.472 
0.45 4.212 10.757 17.614 24.535 31.478 38.432 45.391 52.354 
0.50 4.574 11.903 19.544 27.245 34.967 42.699 50.437 58.177 
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Table 4. Roots a. for coefficient of inhomogeneity m equal to 4/7 

mode n 

.~ 1 2 3 4 5 6 7 8 

0.00 2.999 6.133 9.273 12.413 15.554 18.695 21.836 24.977 
0.03 3.007 6.185 9.417 12.694 16.006 19.343 22.699 26.068 
0.05 3.020 6.264 9.610 13.026 16.486 19.975 23.482 27.001 
O. 10 3.076 6.557 10.234 14.005 17.822 21.664 25.520 29.386 
O. 15 3.164 6.945 10.980 15.110 19.282 23.475 27.680 31.893 
0.20 3.280 7.409 11.827 16.336 20.882 25.447 30.021 34.602 
0.25 3.426 7.950 12.784 17.704 22.657 27.627 32.605 37.588 
0.30 3.604 8.577 13.871 19.247 24.653 30.074 35.502 40.935 
0.35 3.818 9.304 15.118 21.009 26.927 32.858 38.797 44.739 
0.40 4.077 10.154 16.564 23.046 29.553 36.073 42.599 49.129 
0.45 4.389 11.159 18.264 25.436 32.633 39.840 47.054 54.271 
0.50 4.771 12.366 20.295 28.289 36.305 44.332 52.365 60.400 

Table 5. Roots a. for coefficient of inhomooeneity m equal to 2/3 

mode n 

2 1 2 3 4 5 6 7 8 

0.00 3.142 6.283 9.425 12.566 15.708 18.850 21.991 25.133 
0.03 3.150 6.346 9.604 12.918 16.275 19.661 23.070 26.492 
0.05 3.165 6.439 9.831 13.307 16.834 20.393 23.972 27.564 
0.10 3.229 6.772 10.539 14.412 18.335 22.285 26.251 30.226 
0.15 3.327 7.203 11.364 16.631 19.943 24.277 28.624 32.979 
0.20 3.455 7.712 12.291 16.969 21.688 26.426 31.176 35.933 
0.25 3.614 8.301 13.331 18.455 23.614 28.791 33.979 39.171 
0.30 3.807 8.980 14.508 20.124 25.773 31.437 37.112 42.790 
0.35 4.039 9.765 15.854 22.025 28.226 34.442 40.667 46.895 
0.40 4.318 10.682 17.412 24.220 31.055 37.904 44.762 51.623 
0.45 4.655 11.764 19.241 26.791 34.368 41.957 49.555 57.155 
0.50 5.065 13.061 21.424 29.857 38.315 46.784 55.262 63.741 

Table 6. Roots a, for coefficients of inhomogeneous m equal to 1.0 

mode n 

2 1 2 3 4 5 6 7 8 

0.00 3.832 7.016 10.174 13.324 16.471 19.616 22.760 25.904 
0.03 3.849 7.155 10.594 14.153 17.791 21.477 25.194 28.931 
0.05 3.875 7.330 11.012 I4.842 18.752 22.706 26.686 30.683 
0. I0 3.981 7.879 12.145 16.568 2"1.060 25.581 30.133 34.693 
O. 15 4.130 8. 527 13.360 18. 342 23.385 28.457 33.545 38.644 
0.20 4.319 9.261 14.677 20.232 25.841 31.477 37.127 42.785 
0.25 4.547 10.088 16.126 22.294 28.511 34.752 41.005 47.267 
0.30 4.819 11.027 17.745 24.586 31.472 38.380 45.299 52.225 
0.35 5.141 12.102 19.581 27.176 34.813 42.470 50.138 57.813 
0.40 5.524 13.348 21.693 30.150 38.646 47.161 55.685 64.216 
0.45 5.983 14.811 24.163 33.621 43.117 52.630 61.152 71.680 
0.50 6.540 16.558 27.102 37.747 48.428 59.125 69.831 80.542 

values of 2 (0.02 to 0.10) are typical of earth and  rockfill 
dams, whereas large values (0.20 to 0.50) are typical of 
embankments .  

Alternatively, co n and  T, can be rewritten in terms of the 
average shear wave velocity, C, of the dam:  

C =  , f  x C(~)~ d(  4 1 - t~ 2 + ra/2 

~ 4 + m  1 - 2 2  
( d(  

C b (19) 

The corresponding expressions for the fundamenta l  
period T~ and  the nth na tura l  frequency ~ ,  are given in 
Table  7, a long with the expressions for the modal  

displacement shape and  the modal  par t ic ipat ion factor, 
for ~. = 0.0 (typical for tall ear th and  rockfill dams). Also 
given in this table are the formulae deduced from the 
general expressions for four characteristic values of the 
inhomogenei ty  parameter :  m = 0 (homogeneous),  m = 1/2, 
m = 2/3 and  m = 3/4. 

To further illustrate the effects o f inhomogene i ty  on the 
dynamic  characteristics of dams and  e mba nkme n t s  Figs. 
4 and  5 contras t  the na tura l  periods T~ of five i nhomo-  
geneous dams with the corresponding periods T,0 of a 
homogeneous  dam having the same height and  average 
shear-wave velocity. Specifically, Fig. 4 plots as a funct ion 
of m the ratio T,/Tno for n = 1-4. For  ~. = 0 (Fig. 4a), the 
degree of inhomogenei ty  has a negligible effect on the first 
mode (difference less than  29/o), but  it may affect 
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Table 7. Analytk'al results for dams with G= Gb(" and )~ =0 (typical for all earth~rock-fill dams) 

Acceleration 
Factor of Fundamental nth Natural nth Mode nth M o d e  Amplification Crest 

Inhomogeneity Period Circular Freq. Displacement Shape Participation Factor F u n c t i o n  Amplification 
m T l (C/H) oJ.(H/C) U. P. AF(O Function 

m (general 16n (4+m)(2- m)a.  (-,w2jq[a.~l-m/2] 2 1 
expression) (4+m)(2-m)a I 8 a. Jq+l(a.) 

0 2 1 
(homogeneous) 2.613 a.(0) J°[a"(0)~] a.(0) J 1 [a.(0)] 

2 1 
1/2 2 .565 0.843a.(1/2) (-  ~/4j~/3[a.(1/2)~3/4] 

a.(1/2) J4/3[a.(l/2)] 

2 
2/3 2.571 0.788mr ( -2/3 sin[nn(1 - (2/3)] 

nT~ 

2 1 
3/4 2 .579  0.742a.(3/4) (- a/sJ3/5[a.(3/4)~5/s ] 

a.(3/4) Js/5[a.(3/4)] 

(_m/2Jq(a(l-m/2) (~)tt 1 
Jq(a) F(q + 1)Jq(a) 

Jo(a() 1 
Jo(a) Jo(a) 

at/3 
- l/4 J1/3(a~3/4) 0 . 8 8 8 8 - -  

Jl/3(a) J1/3(a) 

2/3 sin(a(2/3) a 
sin a sin a 

a3/5 
~- 3/a J3/5 (a(5/s) 0 . 7 3 8 4 - -  

Ja/5 (a) J 3/5 (a) 

a.=a.(m) has been tabulated in Tables 2-6; q=m/(2-m); a=~oH(1 +q)/Cb; F( ) denotes the Gamma function 

appreciably the higher modes. For example, for m = 2/3, 
the fourth natural period is about 20% higher than the 
same period of the homogeneous dam. On the contrary, 
for 2 = 0.5 (Fig. 4) the effect inhomogeneity on the natural 
periods appears to be negligible, especially for the higher 
modes. In Fig. 5 plotted versus m is the ratio 7",/7"1, n = 1-4. 
It is evident that this ratio decreases with increasing m, i.e. 
the consecutive natural periods get closer to each other in 
the more inhomogeneous earth dams. Naturally, of 
course, this effect is barely distinguishable for 2--0.50. 

The effect of the type of inhomogeneity on the first four 
modal displacement shapes is portrayed in Fig. 6 for 
m=0,  1/2, 4/7, 2/3 and I. Only results for 2=0 .0  are 
shown, since the differences between shapes are negligible 
for 2 = 0.50. It is observed that for each and every mode 
the homogeneous model does not predict as sharp a 
'deamplification' with depth as the one computed for 
dams with m> 0 -  a phenomenon previously noticed by 

Gazetas 10 1 ~ for the particular case ofm = 2/3. Dams with 
large values of m deform almost like uniform 'flexural' 
beams despite the fact that only shear deformations take 
place. This apparent flexural behaviour is particularly 
strong when m = l  (strongly inhomogeneous dam). 
Notice, nonetheless, that the range of m values usually 
expected in practice (0.40 ~< m ~< 0.75), the modal displace- 
ments shapes are not sensitive to small changes in m. Thus, 
uncertainties in assessing the appropriate value of m in 
practical situations are not likely to influence the analysis 
to a very significant degree. 

RESPONSE TO SEISMIC BASE EXCITATION 

For a synchronous (in-phase) oscillation of the rigid base 
described through the acceleration u'=t~'g(t) in the y 
direction, the governing equation of moUon takes the 
form 

Tn(m)  

Tn(O) 

] .5 ] .5 

0.5 

n=] 

= 0.50 

n = l  

I I i I 0 . 5  I I I I 
0 . 4  0 . 8  0 0 . 4  0 . 8  

Ill m 

Fig. 4. Effect o f  inhomogeneity on the ratio o f  the natural periods o f  the inhomogeneous and homogeneous dams for:  (a) 
2 = 0  and (b) 2=0.50  
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Fig. 5. Effect of inhomogeneity on the ratio of the nth natural period to the fundamental period for (a) 2 = 0 and (b) 2 = 0.50 

Ou]=ff+ffg (21) 1 0 C 2 ( Z ) , Z ~  Z 
z Oz 

in which u = u(z,t) is displacement at depth z, relative to 
the base. The orthogonality condition (which, as easily 
shown, is satisfied in this case) allows using modal 
superposition. Hence, u(z,t) is obtained as a summation of 
a discretely infinite number of displacement histories, 
corresponding to each of the natural frequencies of the 
dam: 

u(z,t)= ~ P.. U.(z).D.(t) (22) 
n = l  

where P. is the participation factor of the nth mode 

P. _ [~,~ 
Cu.(c) dC 

2 Nq+x(a.) 
- a. Nq2 + 1 (a.)-22-mN2(a. 21-m/2 ) (23) 

and D.(t) is the reponse of a single degree of freedom 
system having frequency o~. and damping ft.: 

D.(y)=-~. ~o iig(r)e-I~"""-" sin co*(t-z)'dz (24) 

in which co* = oJ.(1 -fl2)l/2. Expressions for P. of several 
inhomogeneous dams are depicted in Table 7, for 2 = 0.0. 

The absolute acceleration at a depth z is d +  fro. Making 
use of equation (22) U'a is found equal to 

(ia(z,t)= PnUn(z)Dan(t)+ 1 -  • P.U.(z )  ( 2 5 )  
n=l L n = '  

where Da. is the expression 

O 1 - 2/~. ~ fo a~ --(1--S-fl.~2 "tO. ff0(T)e't~;"."-" sin co*(t -- z) dz 

+ 2fl.co. fo iig(z)e-t"""-" cos to*(t-z) dz 

(26) 

To evaluate displacements, the first few terms of the series 
(usually 3 or 4) are sufficient. The absolute acceleration, 
however, demands a larger number of terms (about 10 or 
more) as convergence of the series to the exact value of t~'~ 
is slower. 

It is of interest to focus on the displacement modal 
participation defined as the product of the participation 
factor times the respective modal displacement shape: 

@.=¢P.(z)= P.U.(z) (27) 

Fig. 7 plots the variation of the ~ .  value at the crest of the 
dam, ~.(h), as a function of the truncation ratio 2, and the 
inhomogeneity parameter m, for n = 1-8. Notice that for 
2 = 0, while in dams with m = 2/3 the value of IO.I at the 
crest remains constant (independent of n) equal to 2, 
smaller values of m lead to ]~.1 values which decrease 
monotonically with increasing mode number n. In the 
extreme case of a homogeneous model (m = 0): IO,l--- 1.61, 
['21---1.07, 1"3l --- 0.85, l**] --- 0.73, and so on. Conse- 
quently, one should expect that, in general, the relative 
contribution of higher modes on the near-crest response 
will increase with increasing degree of inhomogeneity. 
This has indeed been evidenced in both the results of 
acceleration time-history analyses and the steady-state 
acceleration transfer functions to harmonic base 
excitation presented in the sequel (Fig. 8a). 

STEADY-STATE RESPONSE TO HARMONIC 
BASE MOTION 

It is of interest to show that a closed-form analytical 
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Fig. 6. Displacement modal shapes for five values of  the inhomogeneity parameter (m=0, 1/2, 4/7, 2/3 and 1) 

expression can be derived for steady-state displacements 
and accelerations arising from a harmonic base 
excitation. Indeed, equation (21) yields for the relative 
displacement u (~ ;t ) = u(( ) " e*"' : 

u(O ~-.,/2 
Ug 

Jq + 1 ( a21 -.,/2 ) yq (a~ x - .,[2 ) - -  yq + 1 (a21 --. ,[2 )jq (a( 1 - m/2 ) - -  1 

Jq + 1 (a21 - m/2 ) yq (a) - Yq + 1 (a21 - m / Z ) j q  (a) 

(28) 
in which 

coH 
a =-~z-~ (1 + 1) (29) 

c f f  

Equation (28) is valid for both real and C ~ = C  b 
(appropriate for cases with material damping=0) and 
complex C ' ~ = C b ( x / ~ 2 i f l )  (for cases with material 
hysteretic damping ratio = fl). 

From equation (28) the transfer function of the absolute 
acceleration, u'+ fig, usually named 'amplification' 
function, is determined: 

i i(O+ii,  u(() 
AF(()  = .. = + 1 (30) 

Ug U a 
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Fio. 7. Crest displacement modal participation [~b.(0)= P.U,(O)] versus truncation ratio for the first 8 modes (m = O, 1/2, 
4/7, 2/3 and 1) 

O f  specia l  in te res t  is the  ' amp l i f i c a t i on '  a t  the  cres t  (( = 2): 

2 
A F  (2) = ~ [Jq + ~ (a2 ~ - m]2 ) yq (a) - Jq (a) Yq +~ (a2 ~ - "/2 )] -~ 

(31) 

Again ,  for  tal l  d a m s  (2--*0) e q u a t i o n s  (20) a n d  (31) 
simplify,  respect ive ly ,  to  

AF(~):. =0 = ~ - m/Z Jq (a~l - ra/2 ) (32) 
Jq(a) 

Table 8. Characteristics of the five dams used 

Average 
S-wave 

Height Velocity 
Dam (m) (m/s) Ccore/Cshel t ~t 

Inhomogeneity 
Parameter 

m 

T,(s) 

SB FE Error 

A 40 200 1.00 0.043 
B 80 245 1.00 0.027 
C 120 280 1.00 0.027 
D 120 280 0.72 0.027 
E 120 280 0.50 0.027 

0.57 0.534 0.56 4.6 
0.57 0.860 0.904 4.8 
0.57 1.129 1.187 4.9 
0.63 1.129 1.211 6.7 
0.63 1.129 1.283 12.0 

Table 9. 7he four earthquake records used 

Earthquake M Record Component 

Peak values of 

Acceleration Velocity Displacement 
R (km) cm/sec 2 cm/sec cm 

Eureka (1954) 6.5 
Imperial Valley 6.7 

(1940) 
San Fernando 6.4 

(1971) 
Kern County 7.7 

(1952) 

Eureka Federal Building 
El Centro 

1901 Ave. of the Stars 
Subbasement Los Angeles 

Taft Lincoln School Tunnel 

N79E 24.0 196.2" 22.8 10.9 
S00E 9.3 196.2' 19.2 6.24 

N46W 39.8 196.2" 22.3 16.3 

N21E 43.0 196.2* 20.2 8.6 

* All records have been normalized to a 0.20 g peak acceleration 
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and 

a q 

in which F( ) denotes the Gamma function. 
Notice that Table 7 depicts the foregoing general 

expressions for AF(() and AF(0), as well as the special 
expressions for m= 0, 1/2, 2/3 and 3/4. 
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Fig. 12. (a) Scaled acceleration time histories of  the four 
earthquakes. (b ) Pseudo-velocity spectra of  the four scaled 
records (damping ratio fl = O.lO) 
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ments from SB and FE analyses 
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Fig. 14. Dam B: Distribution with depth of peak displace- 
ments from SB and FE analyses 

Fig. 15. Dam C: Distribution with depth of peak displace- 
ments from SB and FE analyses 

The crest amplifications AF(O) from equation_(33) 
0~=0) is plotted in Fig. 8a as a function of a0 =e~H/C, for 
seven values of the inhomogeneity parameter, m = 0, 2/5, 
I/2, 4/7, 2/3, 3/4 and 1, and a single value of the hysteretic 
damping ratio fl=0.10. It is evident that, in addition to 
lower natural frequencies, increasing inhomogeneity leads 
to: (i) larger amplitudes at the first resonance and (ii) 
increased relative importance of the higher resonance. 
Note, however, that for 2 = 0.50 (embankment) the crest 
amplification AF(2) from equation (31) shows no 
sensitivity to variations in m (Fig. 8b). 

The dependence of the amplification function on the 
depth parameter, AF((), is illustrated in Fig. 9, for a dam 
with m = 4/7 and 2 = 0. Notice that the relative importance 
of the higher resonances diminishes at greater depths from 
the crest - this is quite natural since the high-frequency 
'whip-lash' effect on flexible structures is observed only 
near the top. 

Finally the effect of the hysteretic damping ratio on the 
crest amplifications is illustrated in Fig. 10. 

RESPONSE TO SEISMIC RECORDS: 
COMPARISON WITH FINITE-ELEMENT 
ANALYSES 

A major attractiveness of the proposed generalized 

inhomogeneous shear beam (SB) model lies in its 
simplicity, manifested in the obtained closed-form results 
shown in Table 7. Thus, the model can be particularly 
useful in preliminary design calculations w hen use of more 
rigorous but quite expensive models (such as those based 
on plane-strain finite-elements) is not warranted in view of 
the great uncertainties regarding geometry, material 
behaviour and excitation, prevailing at this early stage. It 
would be of interest to investigate the validity of this 
simple model by comparing its peak seismic response 
predictions to those computed with a compatible plane- 
strain finite-element (FE) analysis. An extensive such 
comparative study is reported herein and in the com- 
panion paper by the authors.t It may be noted that in a 
previous publication, Tsiatas and Gazetas, 28 studied the 
natural periods and mode displacement shapes of five 
idealized dam cross-sections and found generally good 
agreement between shear beam and finite-element 
predictions. 

The five dam cross-sections studied here are portrayed 
in Fig. 11. They are typical of modern earthtill dams, all 
having upstream and downstream slopes of 2.5:1 and 
2.0:1, and heights ranging from 40m to 120m. Table 8 
contains their fundamental geometric and material 
characteristics. For both the core and the shell materials 
of all dams the shear modulus was assumed to be 
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Fig. 17. Dam E: Distribution with depth of peak displace- 
ments from SB and FE analyses 

proportional to the square-root of the mean pressure, i.e. 
# = 1/2 in equation (2). For each cross-section, the distri- 
bution with depth of the average (across the width) shear 
modulus was fitted closely by an expression of the form of 
equation (3), and thereby the m value of a consistent 
inhomogeneous SB was obtained. For the studied dams m 
ranged from 0.57 to 0.63. 

The fundamental natural periods T~ of each of the five 
dams derived from the SB and FE analysis are contrasted 
in Table 8. It may be concluded that the SB model would 
only rarely underpredict T 1 by more than 5% - a 
negligible 'error" in view of the real life uncertainties 
associated with material properties and frequency content 
of potential ground excitations. The stiffer behaviour of 
the SB model should be attributed to the 'suppression' of 
the vertical degree of freedom, which the actual dam and 
its FE model enjoy. 

To account for the random nature of seismic ground 
shaking, four historic seismic accelerograms have been 
selected to excite each of the five dams. These motions 
were recorded during the earthquake of Eureka 1954, 
Imperial Valley 1940, San Fernando 1971 and Kern 
County 1952. Table 9 gives pertinent information on these 
earthquakes as well as on the specific records used in our 
analysis. Note that all records have been scaled to aO.20 g 
peak ground acceleration. The scaled acceleration 

histories and the corresponding 10%o pseudo-velocity 
spectra are depicted in Fig. 12. Evidently, the selected 
records differ substantially in their frequency content, 
thereby encompassing a reasonably wide range of 
potential excitations. 

Figs. 13-17 plot peak values of horizontal displace- 
ments for each of the five dams excited by each of the four 
records. The continuous lines represent the SB displace- 
ments which, being uniform across the dam, are functions 
of depth only. The plane-strain FE displacements, varying 
with location across the dam, are depicted as 'data' points; 
triangles represent displacements of the upstream face, 
while squares denote displacements of the vertical central 
axis. 

It is worthy of note that in all cases the performance of 
the inhomogeneous SB model is quite satisfactory. Its 
peak crest displacements are in most cases within merely 
10% of the FE values, with no consistent trend of either 
over- or under-predicting. Moreover, the SB predicts an 
attenuation of peak displacements with depth which in 
the majority of cases lies in between the FE distributions 
along the face (A) and along the central vertical axis ([]) of 
the dam, as in fact is appropriate for shear beam model. 
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